
COMPUTATIONAL MATHEMATICS

TOPIC I: AN UNDERVIEW OF C

PAUL L. BAILEY

1. Generations of Language

We say that C is a third generation language.

(a) machine language: actual numbers that the CPU uses as commands
(b) assembler: converts mnemonic commands into machine language com-

mands using a one to one correspondence.
(c) c-language: a handful of flow control keywords and block-determining punc-

tuation, together with the ability to invoke functions compiled from assem-
bler (or from C).

2. Machine Language

Powers of two are obviously important in programming; we list the first 16:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536.

We describe an simple 16 bit computer; a byte is eight bits, and for this computer,
a word is 16 bits.

(a) The memory address space is 16 bits, so there are 216 = 65536 memory
locations; the number of a memory location is called an address. The first
address is 0 and the last address is 65535.

(b) Each memory location contains a 16 bit integer, so it is a number between
0 and 65535. The memory is divided into 256 segments, each containing
256 words. An address consists of a segment together with an 8 bit offset
within that segment.

(c) The CPU contains four 8 bit registers:
– data segment
– data offset
– program segment
– program offset

Commands to the CPU are 16 bit integers, broken into two 8 bit parts:

(a) The first 8 bits are the command itself; thus there are 256 commands.
(b) The second 8 bits are the argument to the command.

The program pointer is a 16 bit integer which consists of the program segment
in its high bits and the program offset in its low bits. Similarly, there is a data
pointer.

The number stored at the address indicated by the program pointer is the next
command for the CPU. After a command is executed, the program pointer is in-
cremented, unless the command changed the program pointer.

Date: August 16, 2018.

1



2

There are commands to set the data and program segments, in which case the
eight bits of the argument are copied into one of these registers. There are com-
mands to jump to a memory location within the current segment, in which case the
eight bits of the argument are copied into the program offset.

We may rotate the bits of a data address, in which case the 8 bits of the argument
indicate the offset of the memory location to be rotated within the current data
segment. Other unary operations also work in this way.

We may add two numbers in the same data segment. The offset of the location
of one number is the argument to the command, and the offset of the location of
the other number is the data offset. The result is placed in the location indicated
by the data pointer. Other binary operations also work in this way.

The way in which 16 bit integers are converted into CPU behavior is referred to
as the machine language for this particular computer.

3. Assembler

We continue discussing our theoretical 16 bit machine, and create an assembly
language for it.

Each of the 256 commands are given a 3 letter mnemonic. Each mnemonic rep-
resents to a number between 0 and 255; this number is the corresponding machine
language command. Addresses are given tags. We given an example, in which
semicolons represent comments. Here, PP means program pointer, DP means data
pointer, and *DP means the contents of the data pointer.

T1 ROR T2 ; Rotate memory at T2 right by 1

DAT T4 ; Set DP to T4

MOV T2 ; Move the contents of T2 to *DP

ADD T3 ; Add the contents of T3 to *DP

JMP T5 ; Copy the contents of T4 to PP

T2 32 ; some data

T3 61 ; some data

T4 0 ; some data

T5 ; continue with program

We use an editor to create a text file containing the text of this program, and
the file is stored with a .ASM extension. This file contains source code.

We use a compiler to translate the mnemonics and tags into machine language;
the output is stored in a file with a .OBJ extension. This file is called a binary
module.

We may use a library manager to combine one or more modules into a library.
Libraries are stored with .LIB extensions

We use a linker to combine one or more modules, obtained from .OBJ or .LIB
files, into an executable program. This program is stored with a .EXE extension.

Each line of the program corresponds to exactly one machine language command;
in this example, there is a bijective correspondence between words in a binary
program and line in the assembly source code. Modern CPU are more complicated
in this sense, but the underlying idea that machine code corresponds to lines of
assembly language is the same.



3

4. C Language

Assembly allows the programmer to create the faster possible program, since it
gives complete control over the CPU. Because assembly language is specific to the
CPU, programs written using it are not portable; moreover, since the level of detail
in so deep, it takes a lot of time to write the simplest programs.

The C language was developed to overcome these difficulties without sacrificing
programmer control and run-time efficiency. C contains the ability to declare data of
various types, an expression evaluator, and a handful of flow control keywords. All
other functionality in a C program comes from commands referred to as functions,
which are not specified as part of the C language per se. The flow control keywords
of C do nothing more than determine the order in which functions are called. In
this way, C is as close to assembler as any so-called third generation language gets.

The functions called by a C program may be written in assembler or in C and
previously compiled (probably into a library but possibly into objects), or they may
be written elsewhere in the program itself.

There is a standard library of pre-compiled functions which come with every
C compiler; these perform io, memory management, string manipulation, and so
forth.

Files important to the compilation of C programs (with Microsoft extensions)
include:

(a) Source Files (.C for C or .CPP for C++): the actual text of the program
(b) Object Files (.OBJ): machine language modules
(c) Library Files (.LIB): sets of modules packaged together
(d) Executable Files (.EXE): actual code, executable from the command line

The process of using C to create an executable file is in four major steps.

(a) The editor allows the programmer to create the source code.
(b) The precompiler translates the precompiler commands in the source code.

For example:
– #define sets a compile time variable
– #include loads the contents of another source file

In C, the precompiler commands begin with #. The output of the pre-
compiler is typically stored in memory or a temporary file; we never see
it.

(c) The compiler translates the output of the precompiler into relocatable ma-
chine language. The output of a compiler is a module; in Microsoft, these
are given .OBJ extensions.

(d) The linker combines one or more modules in .OBJ files, together with
modules pulled from libraries stored with .LIB extensions, together with
“startup code”, to create an executable .EXE file.



4

5. C Language Keywords

The following is a complete list of the C language keywords.

auto break case char const continue default do
double else enum extern float for goto if

int long register return short signed sizeof static
struct switch typedef union unsigned void volatile while

We may group these keywords:

• Flow Control
– Branching: if, else, switch/case/default
– Looping

∗ Outer Loop: while, do/while, for
∗ Inner Loop: break, continue

– Jumping: goto
– Exiting: return

• Data Typing
– Creating: typedef
– Atomic Types: char, int, float, double, void
– Type Modifiers: auto, const, extern, long, register, short, signed,

static, unsigned, volatile
– Composite Types: enum, struct, union

• Functions: sizeof

The following keywords are not part of C, but have been added to C++.

bool catch class delete friend inline
new namespace operator private protected public

tempate this throw try template

Department of Mathematics and CSci, BASIS Scottsdale

Email address: plbailey@saumag.edu


